

ROHM Sensor Shieldの BD1020HFV用ソフトウェア資料

Feb 1, 2016 Sensor Application G

温度センサ(BD1020HFV)

- スケッチファイルの動作(BD1020.ino)
- setup関数
 - Arduino IDEのSerial Monitorにログを出力するためのSerial関数設定(9600bps)
 - BD1020初期化関数(引数にアナログ端子番号)
- loop関数
 - 温度センサの出力電圧を取得し、ADC後の値と温度値に変換して出力
 - 500msごとに実行
- ライブラリファイル(BD1020.h, BD1020.cpp)
- コンストラクタ
 - 何もしない
- init関数
 - 引数に指定されたアナログ端子番号を保持
- get_rawval関数
 - init関数で指定したアナログ端子のADC後の値を返す
- get val関数
 - 1. get_rawval関数の実行
 - 2. convert_degree関数の実行
 - 3. 温度値を返す
- convert_degree関数
 - ・ 温度センサの出力電圧から温度値へ変換

温度センサ(BD1020HFV)

- 温度センサの出力電圧から温度値変換
- Arduino UnoのADCの基準電圧はデフォルト5V
- Arduino UnoのADCは10bitだから5V=1023 [counts]が最大
- 温度センサの電源電圧を3Vにした場合、ADCの最大は1024*3/5=615 [counts]になる
- 温度センサの出力電圧は以下の式で導出
 Temp_vout[V] = (ADC_Value * 5[V]) /1024 [counts]- ①
- 温度 vs 電圧
 - 温度感度と出力電圧値から以下の式が成り立つ(標準値)
 Vout [mV] = -8.2[mV/°C] × (Temp[°C] 30) + 1300 [mV]
 - これを温度出力に整理すると
 Temp[°C] = (- Vout[mV] + 1546[mV]) / 8.2 [mV/°C]
 - さらにVoutに①式を代入して

 $Temp[^{\circ}C] = (-Temp_vout[V] * 1000 + 1546[mV]) / 8.2[mV/^{\circ}C]$ となる

温度感度	V _{SE}	-8.4	-8.2	-8.0	mV/°C	
消費電流	Is	-	4.0	7.0	μΑ	
出力電圧	V _{out}	1.288	1.300	1.312	٧	Ta = 30°C
出力電圧電源電圧変動	⊿VouτVbb	-	-	4	mV	V _{DD} = 2.4∼5.5V
出力電圧負荷変動	$\Delta V_{OUT}R_L$	-	-	1	mV	I _{OUT} : 0μA / 0.7μA 差

